
Page 1 of 10

King Fahd University of Petroleum & Minerals
College of Computer Science and Engineering

Information and Computer Science Department
First Semester 121 (2012/2013)

ICS 202 – Data Structures

Final Exam
Wednesday, January 2nd, 2013

Time: 120 minutes

Name: ___

Section 01

Question # Max Marks

Marks
Obtained

Dr. Wasfi
1 30

10-10:50am
2 20

Section 02
3 15

Dr. Sami
4 15

5 20

9-9:50am
Total 100

Instructions

1. Write your name and ID in the respective boxes above and circle your section.

2. This exam consists of 10 pages, including this page, plus one additional reference sheet,

containing 5 questions.

3. You have to answer all 5 questions.

4. The exam is closed book and closed notes. No calculators or any helping aids are allowed.

5. Make sure you turn off your mobile phone and keep it in your pocket if you have one.

6. The questions are not equally weighed.

7. The maximum number of points for this exam is 100.

8. You have exactly 120 minutes to finish the exam.

9. Make sure your answers are readable.

10. If there is no space on the front of the page, feel free to use the back of the page. Make sure

you indicate this in order not to miss grading it.

ID#

Page 2 of 10

Q.1 [30 points] Multiple Choice Questions: Mark the best answer for each question below.

Note: only one choice should be chosen.

1. Consider the following code segment
sum = 0;

for (i=1; i<n; i*=2)

 for (j=1; j<=i; j++)

 for (k=1; k<=j; k++)

 sum++; // Statement 1

The number of times Statement 1 is executed, assuming n > 1 is a power of 2, is equal to

a. n2

b.
𝑛2

6
+

𝑛

2
−

2

3

c.
1

2
 n log n

d. 10n – 19

e. none of the above.

2. Consider the following method
1) public void final(int [] A, int n) {
2) if (n == 1) {
3) System.out.print(A[n-1]+",");
4) return;
5) }
6) final(A, n/2);
7) System.out.print(A[n-1]+",");
8) final(A, n/2);
9) System.out.print(A[n-2]+",");
10) }

The number of times the print statements in lines 3 and 7 are executed, assuming n is a

power of 2, is equal to

a. 3n – 2

b. 2𝑛+1 − 1

c. 2n – 1

d. 2𝑛 − 1

e. none of the above.

3. The method final in Question 2 when called on A=[5,4,3,2,1] and n = 4 outputs

a. an exception for an illegal index value for array A.

b. 1,2,1,1,4,1,2,1,1,3,

c. 5,3,5,4,1,5,3,5,4,2,

d. 5,4,5,5,2,5,4,5,5,3,

e. none of the above.

4. The most efficient data structure in the worst case, among the following, in the cost of

searching is

a. an open-addressing hash table.

b. a binary search tree.

c. a sorted array.

d. a queue.

e. both answers b and c as they are asymptotically equal.

iii_m
Highlight

iii_m
Highlight

iii_m
Highlight

iii_m
Highlight

iii_m
Highlight

iii_m
Highlight

Page 3 of 10

5. The following statement is not true regarding arrays vs. singly linked lists of size n > 1.

a. Removing the last element in an array is more efficient than removing the last

element in a linked list, in the worst case.

b. Appending an element to the end of an array, and appending an element to the end

of a linked list, both cost O(1), in the worst case.

c. Switching between any two elements in an array, and switching between any two

elements in a linked list, both cost O(1), in the worst case.

d. Prepending an element in the beginning of an array is less efficient than

prepending an element in the beginning of a linked list.

e. none of the above.

6. Consider the following B-Tree of order 5.

The resulting tree will definitely have one level less than the current tree after deleting the

key

a. 45

b. 27

c. 20

d. 18

e. all of the above.

7. The run-length encoding of the string CCCCBBBBAAAADDDD:

a. is CBAD4.

b. is C4B4A4D4.

c. is 4CBAD.

d. can be both answers a and b.

e. can be all answers a, b and c.

8. The postfix expression: 9 9 7 - - 3 4 + 8 6 - * + evaluates to

a. 0.

b. – 25.

c. – 7.

d. 17.

e. 21.

27

15 20 33 45

47 50 38 42 29 31 21 23 26 18 19 10 12 14

iii_m
Highlight

iii_m
Highlight

iii_m
Typewriter
Two answers??

iii_m
Highlight

iii_m
Highlight

iii_m
Highlight

Page 4 of 10

9. Consider the following AVL tree

The operation that may cause a single right rotation, without any double rotations on the

AVL tree is:

a. inserting Key 48

b. deleting Key 38

c. deleting Key 45

d. deleting Key 5

e. none of the above

10. Consider the following directed graph

The number of strongly connected components is equal to

a. 5

b. 4

c. 3

d. 2

e. 1

30

20 45

22

25 38 49 11

15 7

5

47

a d

c f

b h

i

g

e

iii_m
Highlight

iii_m
Typewriter
{g},{a,b,c,d,e,f,h,i}

iii_m
Highlight

Page 5 of 10

Q2. [20 points] (Dijkstra):

A. Consider the following weighted directed graph:

a) [4 points] Is it possible to solve the shortest path problem for the above graph?

Justify your answer

b) [2 points] Is Dijkstra algorithm applicable on the above graph?

iii_m
Typewriter
Yes, since there are no negative cost cycles

iii_m
Typewriter
No, Djakarta algorithm only works for positive weights

Page 6 of 10

B. Consider the following weighted directed graph:

a) [10 points] Apply the Dijkstra algorithm to find the shortest path to any vertex

starting from vertex 1.

Pass initially

w
eigh

t

P
red

ecesso
r

Active

Vertex

1

2

3

4

5

b) [4 points] Draw the resulting vertex-weighted graph.

Page 7 of 10

Q.3 [15 points] (Kruskal’s)

Consider the following weighted undirected graph.

Apply Kruskal’s algorithm to find a minimum spanning tree of the above graph.

edge

weight

Insertion
status

Insertion
order

Page 8 of 10

Q.4 [15 points] (Hashing):

a) [6 points] What is primary clustering? Clearly explain how double hashing avoids it.

b) [9 points] Consider inserting the following keys:

16 , 35 , 33 , 38 , 18 , 27 , 10

respectively, into a hash table of size 17, using open addressing and hash function:

h(key)= key % 17

Use double hashing as a collision resolution policy with

hp(key)= 11 – key%11

Show the hash table after the insertions, showing all your work.

Page 9 of 10

Q.5 [20 points]: (Compression)

a) [6 points] Using Huffman coding, show the resulting Huffman coding tree for

compressing the following message. Make sure you show all your work.

h#he#hhee#he#hee#heed#hea#

b) [4 points] Compute the compression ratio, showing your work. Make sure you state

any assumptions.

iii_m
Typewriter
Original message: 26*8=208

iii_m
Typewriter
Compressed message: 3+5*8+54+12=109

iii_m
Typewriter
109/208=52% of original data

Page 10 of 10

c) [6 points] Compress the following message using LZ78. Make sure you show all your

work:

h#he#hhee#he#hee#heed#hea#

d) [4 points] Compute the compression ratio, showing your work. Make sure you state

any assumptions.

iii_m
Typewriter
Original message: 26*8=208

iii_m
Typewriter
Compressed message: 0h0#01e10h011e100e110e111d0110a0010
26+9*8=98

iii_m
Typewriter
98/208=47% of original data

Quick Reference Sheet

public class SLLNode<T> {

 public T info;

 public SLLNode<T> next;

 public SLLNode();

 public SLLNode(T el)

 public SLLNode(T el, SLLNode<T> ptr);

}

public class SLL<T> {

 protected SLLNode<T> head, tail;

 public SLL();

 public boolean isEmpty();

 public void addToHead(T el);

 public void addToTail(T el);

 public T deleteFromHead();

 public T deleteFromTail();

 public void delete(T el);

 public void printAll();

 public boolean isInList(T el);

}

public class DLLNode<T> {

 public T info;

 public DLLNode<T> next, prev;

 public DLLNode();

 public DLLNode(T el);

 public DLLNode(T el, DLLNode<T> n,

 DLLNode<T> p);

}

public class DLL<T> {

 private DLLNode<T> head, tail;

 public DLL();

 public boolean isEmpty();

 public void setToNull();

 public void addToHead(T el);

 public void addToTail(T el);

 public T deleteFromHead();

 public T deleteFromTail();

 public void delete(T el);

 public void printAll();

 public boolean isInList(T el);

}

public class Stack<T> {

 private …; // array or linked list

 public Stack();

 public Stack(int n);

 public void clear();

 public boolean isEmpty();

 public T topEl();

 public T pop();

 public void push(T el);

 public String toString();

}

public class Queue<T> {

 private …; // array or linked list

 public Queue();

 public void clear();

 public boolean isEmpty();

 public T firstEl();

 public T dequeue();

 public void enqueue(T el);

 public String toString();

}

public class BSTNode<T extends Comparable<?

super T>> {

 protected T el;

 protected BSTNode<T> left, right;

 public BSTNode();

 public BSTNode(T el);

 public BSTNode(T el, BSTNode<T> lt,

 BSTNode<T> rt);

}

public class BST<T extends Comparable<?

super T>> {

 protected BSTNode<T> root = null;

 public BST();

 protected void visit(BSTNode<T> p);

 protected T search(T el);

 public void breadthFirst();

 public void preorder();

 public void inorder();

 public void postorder();

 protected void inorder(BSTNode<T> p);

 protected void preorder(BSTNode<T> p);

 protected void postorder(BSTNode<T> p);

 public void deleteByCopying(T el);

 public void deleteByMerging(T el);

 public void iterativePreorder();

 public void iterativeInorder();

 public void iterativePostorder2();

 public void iterativePostorder();

 public void MorrisInorder();

 public void MorrisPreorder();

 public void MorrisPostorder();

 public void balance(T data[], int first,

 int last);

 public void balance(T data[]);

 public void insert(T el)

}

2

)1(

1

+
=

=

nn
i

n

i , 6

)12)(1(

1

2 ++
=

=

nnn
i

n

i ,
() 2

1

3

2

1

 +
=

=

nn
i

n

i ,
1

0

1

1

nn
i

i

x
x

x

+

=

−
=

−
 ,

2lg 𝑛 = 𝑛

